Salt-induced release of DNA from nucleosome core particles.
نویسندگان
چکیده
At elevated salt concentrations, the structure of chromatin is destabilized. This paper is concerned with the processes by which DNA is released from nucleosome core particles in free, uncomplexed form. Our experiments indicate that the DNA release reaction has distinctly different characteristics below and above approximately 0.75 M NaCl. Below this concentration of salt, release of the histones from the DNA is highly cooperative, so that no dissociation intermediates are even seen. Above this salt concentration, histone release is not so cooperative; H2A and H2B are released from the DNA more readily than are H3 and H4. This results in an apparently heterogeneous population of (H2A, H2B)-depleted intermediate species sedimenting at rates between that of free DNA and that of intact core particles. Dissociation of core particles at NaCl concentrations below 0.75 M is readily reversible. Reassociation of DNA and histones from higher salt concentrations is nearly quantitative if carried out by gradual decrease of salt concentration, but rapid dilution to low salt results in the formation of a fraction of metastable nucleosome multimers. To help organize our description of the DNA release process, we introduce a stability diagram for the core particle, defined with respect to the independent variables of salt concentration and particle concentration. We draw upon our own experimental work and also upon the work of several other laboratories. We distinguish five major regions in this diagram.
منابع مشابه
Stability of the primary organization of nucleosome core particles upon some conformational transitions.
The sequential arrangement of histones along DNA in nucleosome core particles was determined between 0.5 and 600 mM salt and from 0 to 8 M urea. These concentrations of salt and urea up to 6 M had no significant effect on the linear order of histones along DNA but 8 M urea caused the rearrangement of histones. Conformational changes in cores have been identified within these ranges of condition...
متن کاملSalt-induced conformation and interaction changes of nucleosome core particles.
Small angle x-ray scattering was used to follow changes in the conformation and interactions of nucleosome core particles (NCP) as a function of the monovalent salt concentration C(s). The maximal extension (D(max)) of the NCP (145 +/- 3-bp DNA) increases from 137 +/- 5 A to 165 +/- 5 A when C(s) rises from 10 to 50 mM and remains constant with further increases of C(s) up to 200 mM. In view of...
متن کاملLocal DNA sequence controls the cooperativity and asymmetry of DNA unwrapping from nucleosome core particles
DNA is tightly wrapped around histone proteins in nucleosome core particles (NCPs), yet must become accessible for processing in the cell. This accessibility, a key component of transcription regulation, is influenced by the properties of both the histone proteins and the DNA itself, in addition to other factors. Here we focus on how DNA sequence affects unwrapping from NCPs, and thus accessibi...
متن کاملOpposing roles of H3- and H4-acetylation in the regulation of nucleosome structure—a FRET study
Using FRET in bulk and on single molecules, we assessed the structural role of histone acetylation in nucleosomes reconstituted on the 170 bp long Widom 601 sequence. We followed salt-induced nucleosome disassembly, using donor–acceptor pairs on the ends or in the internal part of the nucleosomal DNA, and on H2B histone for measuring H2A/H2B dimer exchange. This allowed us to distinguish the in...
متن کاملWrapping of genomic polydA.polydT tracts around nucleosome core particles.
Five human clones containing genomic regions of polydA have been isolated by their ability to form intermolecular triple helices with agarose cross-linked polyU. All of these clones contain Alu repetitive DNA sequences. End-labelled DNA fragments containing these sequences have been successfully reconstituted onto nucleosome core particles by salt exchange. The structure of these has been exami...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 28 5 شماره
صفحات -
تاریخ انتشار 1989